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ABSTRACT 

Formulas for the cross-correlation and spectral density functions 
of the solution of a general linear time-dependent stochastic equation 
are derived. The analysis is based on a modification of the smoothing 
meth6d. The formulas are applied to the case of radiation of scalar 
waves by a random point source in a three-dimensional time-dependent 
random medium. The medium is assumed to be statistically homogeneous 
and isotropic and to be statistically independent of the source. An 
approximate expression for the power spectrum of the wave as a function 
of the source-field point distance (or propagation distance) is obtained 
for the case in which the characteristic frequency of the source is much 
greater than that of the medium. This expression shows that as the 
propagation distance goes to zero the wave spectrum approaches the source 
spectrum; whereas as the propagation distance becomes infinite the wave 
spectrum tends to a limiting form which is referred to here as the fully- 

developed spectrum. It is also found that the total signal power is 
conserved as the spectrum evolves. Numerical results obtained for the 
case of a narrow-band source show a progressive broadening of the wave 

spectrum with increasing propagation distance and/or with increasing 
strength of the randomness of the medium, in agreement with observations. 
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INTRODUCTION 

Broadening of t h e  frequency spectrum of an i n i t i a l l y  narrow-band 

wave f i e l d  is a phenomenon which is c h a r a c t e r i s t i c  of wave propagation 

i n  real, time-dependent media such as t h e  atmosphere o r  ocean. It is . 
.. - . - - . 

u s u a l l y  a consequence of t i m e  v a r i a t i o n s  i n  t h e  medium through which 

t h e  wave propagates ,  bu t  may a l s o  be due t o  i n t e r a c t i o n  of t h e  wave wi th  a 

time-varying boundary. 

- ._ - _  - __  -. - - ._-. - --- 

-.- - . . -- - - -. - .  - -  . .  

S p e c t r a l  broadening has  been observed i n  t h e  

case of both a c o u s t i c  and electromagnet ic  waves, i n  which con tex t s  i t  

is most of t en  t h e  r e s u l t  of e i t h e r  propagat ion through turbulence”*  - _. - -  - __ - - -  - 

o r  s c a t t e r i n g  by t h e  sea su r face .  3 

- I  
_ -  

The present  i n v e s t i g a t i o n  was undertaken wi th  t h e  o b j e c t i v e  of 

s tudying  s p e c t r a l  broadening from a q u i t e  gene ra l  viewpoint;  namely, 

. t h a t  of t he  evolu t ion  of frequency spectra of s o l u t i o n s  of l i n e a r  t i m e -  

dependent s t o c h a s t i c  equat ions.  The approach is  based on t h e  observa- 

t ion,  s t a t e d  i n  i t s  most gene ra l  t e r m s ,  t h a t  an e s s e n t i a l  element i n  

t h e  evolu t ion  of t h e  spectrum of t h e  s o l u t i o n  u 

t h e  form of Eq.  1 arises’when the ope ra to r  L does not  n e c e s s a r i l y  

of a n  equat ion having 
. -. .- 

commute with t r a n s l a t i o n  opera tors  i n  t i m e .  A gene ra l  a n a l y s i s  incor -  

po ra t ing  t h i s  i dea  is  c a r r i e d  out  i n  Sec .  I; t h e  problem of s p e c t r a l  

broadening of waves propagat ing i n  a random medium is  then t r e a t e d  i n  

Sec. 11 as an app l i ca t ion .  

The genera l  a n a l y s i s  i s  based .on t h e  smoothing method, modified 

t o  i nc lude  t h e  case i n  which f ( r e f e r r i n g  aga in  t o  Eq. 1) as w e l l  as 

L is  random. A key assumption i s  t h a t  f and L are s t a t i s t i c a l l y  

independent,  which, i n  terms of  spectral broadening of waves, is  

. 

equiva len t  t o  assuming t h a t  t h e  s o u r c e  of t h e  waves i s  s t a t i s t i -  

c a l l y  independent of t h e  mechanism g iv ing  r ise t o  t h e  s p e c t r a l  



broadening. 

p r a c t i c a l  s i t u a t i o n s  of i n t e r e s t .  

This assumption would appear t o  be a reasonable  one i n  most 

Previous t h e o r e t i c a l  i n v e s t i g a t i o n s  of s p e c t r a l  broadening of waves 

propagat ing i n  random media have been c a r r i e d  o u t  by Howe,' F a n t e , 6 , 7  and 

Woo, e t  a1.8 Howe der ived  a k i n e t i c  equat ion  and used i t  t o  s tudy  t h e  

e f f e c t  of t he  r andomve loc i ty  f i e l d  on t h e  frequency spectrum of an 

a c o u s t i c  wave propagat ing i n  a t u r b u l e n t  f l u i d .  Fante  used t r a n s p o r t  

theory t o  study frequency s p e c t r a  of beamed waves propagat ing i n  a t u r -  

bu len t  atmosphere. The a n a l y s i s  of Woo, e t  a l .  (see a l s o  Ref. 9 ,  p. 422)  

is  based on the pa rabo l i c  equat ion.  

time-dependent tu rbulence  f i e l d ,  whereas both  Fante  and Woo, e t  al. assumed 

t h a t  t h e  time v a r i a t i o n s  of t h e  medium were t h e  r e s u l t  of a s t eady  mean 

Howe t r e a t e d  t h e  case of an i s o t r o p i c  

wind convecting a "frozen" turbulence  f i e l d  i n  a d i r e c t i o n  t r a n s v e r s e  t o  

t h e  beam. The r e s u l t s  of bo th  Howe and Fante  i n d i c a t e  t h a t  t h e  charac te r -  

i s t i c  width of t h e  wave spectrum inc reases  as some power of t h e  propagat ion 

d i s t ance .  The r e s u l t s  of Woo, e t  a l .  are given i n  a somewhat more compli- 

ca ted  form, b u t  seem t o  show a s imi la r  e f f e c t .  I n  c o n t r a s t ,  t h e  p re sen t  

r e s u l t s  i n d i c a t e  t h a t ,  a t  least i n  t h e  case of high-frequency waves, t h e  

spectrum approaches a l i m i t i n g  f o m  ( t h e  fully-developed spectrum) wi th  

i n c r e a s i n g  propagation d i s t a n c e .  

The problem of s p e c t r a l  broadening has  also been 'd i scussed  from a 

t h e o r e t i c a l  viewpoint by Adomian," and has  been t r e a t e d  i n  a r e c e n t  paper 

by Kuznetsova and Chernov. l1 

of s c a t t e r e d  waves and wi th  s p e c t r a  of ampli tude and phase f l u c t u a t i o n s  of 

waves propagating i n  random media, can be found i n  Refs. 1 2 - 1 8 .  

Related work, concerned mainly wi th  s p e c t r a  
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I. GENERAL FORMULATION 
- 

A. Equations f o r  u and 

We begin by cons ider ing  a general  s t o c h a s t i c  equat ion  of t h e  form 

L u = f ,  

where L is a l i n e a r  ope ra to r  on a v e c t o r  space,  u is an  unknown 

vector, and f i s  a given vector .  The ope ra to r  L i s  assumed t o  be  

random; i.e.,  L is assumed to depend on a parameter a which is an  

element of a sample space A. The space A ,  t oge the r  w i th  a a-algebra 

of subse t s  and a p r o b a b i l i t y  measure,  forms a p r o b a b i l i t y  space. The 

v e c t o r  f i s  a l s o  random; however, f is assumed t o  be s t a t i s t i c a l l y  

independent of L. Thus, f may be regarded as be ing  dependent upon 

a parameter b ranging over a d i f f e r e n t  sample space B which, t oge the r  

w i th  its own a-algebra of subse t s  and p r o b a b i l i t y  measure, also forms a 

p r o b a b i l i t y  space. 

It .is clear t h a t  t h e  s o l u t i o n  u of Eq. 1, as w e l l  as func t ions  of 

i t ,  w i l l  depend on both  a and b. (The dependence on t h e  parameters 

a and b of t h e  va r ious  q u a n t i t i e s  appearing i n  t h i s  a n a l y s i s  w i l l  

no t ,  i n  genera l ,  be e x p l i c i t l y  ind ica ted . )  It w i l l  be  necessary ,  there-  

f o r e ,  i n  what fo l lows  t o  d i s t i n g u i s h  between ensemble averages over t h e  

space A, which w i l l  be denoted by < > and averages over B, denoted 

by < >B. An average over both  A and B (i.e.,  a n  ensemble average 

over t h e  product sample space A x B )  w i l l b e  denoted simply by < >. 

A' 

- -_  - -. - I --. -_ ---_l_l___ _______-______________ ____ _ _ _  -. 

W e  no te  t h a t  genera l ly  < > = < <  > > = < <  > > 
A B  B A '  

_. I n  order  t o  s o l v e  Eq. 1 i t  is  convenient t o  assume t h a t  L depends 

on a real  parameter E ,  and t h a t ,  i n  a neighborhood of E = O ,  t h e  

expansion 

L = L o  + EL1 + €2L2 + 

-3- 



is v a l i d .  The ope ra to r  L is assumed t o  
0 

L1 
random) wi th  a known i nve r se ;  whereas 

be  de te rmina te  ( i . e . ,  non- 

L , etc. are g e n e r a l l y  
2 

assumed t o  be random. Approximate equat ions ,  v a l i d  when E is  s m a l l ,  

can now b e  obtained f o r  u and 6 , where u E <u> and 6 E u -  <u> 

The procedure i s  e n t i r e l y  analogous t o  t h a t  descr ibed  by Keller” ( see  a l s o  

Ref. 4 ) .  It is only necessary  t o  keep i n  mind t h a t  s i n c e  f is inde- 

pendent of a i t  is unaf fec ted  by averaging over A .  For t h e  case when 

- 
A ’  A 

<L1>A = 0 , which is usua l ly  t h e  case i n  p r a c t i c e ,  t h e  r e s u l t s  are 

U . 
0 1  

Terms of order  c 3  have been dropped from Eq. 3; terms of o rde r  

have been dropped from Eq. 4 .  
- 

I n  t h e  s p e c i a l  case i n  which f i s  de termina te ,  t h e  q u a n t i t i e s  u 
.. 

(which‘is  then a l s o  determinate)  and u correspond r e s p e c t i v e l y  t o  t h e  

mean and f l u c t u a t i n g  f i e l d s .  

l ead ing  t o  E q s .  3 and 4 ,  which involves  ob ta in ing  s e p a r a t e  equat ions  

f o r  t h e  mean and f l u c t u a t i n g  f i e l d s ,  i s  r e f e r r e d  t o  as t h e  smoothing 

method by Fr i sch .4  

I n  t h a t  contex t  t h e  type  of approach 

( 4 )  

3. Equations f o r  t h e  c o r r e l a t i o n  and spectral  d e n s i t y  func t ions  

We consider now t h e  case  i n  which u and f are real-valued scalar 

func t ions  of 3 and t ( s u b s t a n t i a l l y  t h e  same a n a l y s i s  as t h a t  which 

.-. fol lows app l i e s  i n  t h e  case  of v e c t o r  f u n c t i o n s ) ,  where 5 [ = (x ,*  * * , x n ) ]  
1 

i s  an  n-dimensional s p a t i a l  coo rd ina te  and t i s  t h e .  Only t h e  case  of 

free-space propagation w i l l  be  considered he re ,  and hence t h e  coord ina tes  

-4- 



x ,*-,xn ,t are unbounded. W e  assume t h a t  < L l > A = O ,  so t h a t  t h e  

equat ions  f o r  u and 6 are given by Eqs. 3 and 4 .  We assume a l s o  
1 

t h a t  <f>B = 0 . 
We s h a l l  be  concerned i n  t h e  remainder of t h i s  paper only wi th  random 

processes  which are s t a t i o n a r y  i n  t i m e .  

i n  t h e  wide sense;  i .e. ,  t h a t  c o r r e l a t i o n  func t ions  of t h e  form given by 

Eq. 16 are independent of t .) I n  o rde r  t o  ensure  t h a t  u(t,%) is  

(By s t a t i o n a r y  w e  mean s t a t i o n a r y  

s t a t i o n a r y  i n  t i m e ,  i t  w i l l  b e  necessary,  i n  a d d i t i o n  t o  assuming t h a t  

f ( t , x )  is s t a t i o n a r y  i n  t i m e ,  t o  impose some cond i t ions  on t h e  ope ra to r s  

Lo, Li, LL, etc. We s h a l l  assume h e r e  t h a t  t h e  ope ra to r s  Lo,<LIL, lLl>A, 

and <L,>A commute w i t h  t r a n s l a t i o n  ope ra to r s  i n  t i m e .  Then t h e  ope ra to r  

M w i l l  a l s o  commute wi th  t r a n s l a t i o n  ope ra to r s  i n  t i m e ,  where M is  t h e  

ope ra to r  appearing i n  Eq. 3; i .e. ,  

HI 

That t hese  assumptions are s u f f i c i e n t  f o r  our  purposes will become 

clear as t h e  a n a l y s i s  proceeds. It should be noted t h a t  t hese  assump- 

t i o n s  are n o t  so r e s t r i c t i v e  as t o  exclude,  f o r  example, t h e  case i n  

which L is a l i n e a r  d i f f e r e n t i a l  ope ra to r  w i t h  s t a t i o n a r y  c o e f f i c i e n t s .  

(The ques t ion  of temporal s t a t i o n a r i t y  of random l i n e a r  systems has  

been d iscussed  i n  more d e t a i l  by Vasholz. *') 

-1 We assume next  t h a t  t h e  operator  Lo can b e  expressed i n  terms of 

a Green's func t ion ;  i . e . ,  w e  assume t h a t  t h e r e  e x i s t s  a func t ion  

which s a t i s f i e s ,  along wi th  appropr ia te  i n i t i a l  and/or boundary cond i t ions ,  

t h e  equat ion 

G o ( t , z , z ' )  

_- -. 

LOGo ( t  ,$, 5 ' )  = 6 ( t ) 6  (X - X' ) . 
" , w  

-5- 



Then Lo1 can be expressed in the form 

- 
... - . ... . . _  . .. . . __ . ._ .. . - 

where w(t,%) is any function for which the integral exists. (Here, and 

henceforth, an integral sign without limits denotes an integral from 

- 4 3  to +a.) Similarly, we assume that the inverse operator M 
--I 

exists and that it can be expressed in terms of the Green's function 

G(t,z,3'); i.e., we assume that G is a solution of 

Then the solution of E q .  3 can be written 

- 
u(t, XJ = \/G(t - t', 5,Z')f (t', x') dt'dx'. w 

W 

By making a change of integration variable we can write E q s . 7  and 9 

in the alternate form 

Note that it is the assumption that the operators L o  and M 

commute with time translations that allows the Green's functions Go 

and G in Eqs. 7 and 9 to be written as functions of the difference 

t- t' instead of in the more general form Go(t,t',z,z') and G(t,t',$,$'). 

This property of the Green's functions is necessary for the stationarity 

of u. Note also that both Go and G are determinate functions. 

-6- 



Operating wi th  L1 on - u; as given  by Eq. 9 , y i e l d s  

. &re F is def ined  by 
- _  

(13) 

, '1 The random func t ion  F, which depends on a b u t  n o t  on b ,  has  t h e  .;: 

*prope r ty  that <F>*=O. (This follows from t h e  assumption t h a t  

~ <L1> =O.) Note t h a t  F, as def ined by Eq. 13, must gene ra l ly  be  w r i t t e n  A 
as a - f u n c t i o n  of both  t and t-t', and no t  simply as a func t ion  of 

o r d e r  t o  j u s t i f y  w r i t i n g  F as a func t ion  only of t-t' i t  would 

L1 
. .  . 

e necessary  t o  assume t h a t  t h e  opera tor  

ions. This assumption, however, is too  r e s t r i c t i v e :  As t h e  fo l lowing  

a l y s i s  shows, i t  is  t h e  dependence of  F on t ,  as w e l l  as on t- t ' ,  

commutes wi th  t i m e  t r a n s l a -  

* which is a key element i n  t h e  evolu t ion  of  t h e  frequency spectrum of u.  

We shal l , .however ,  assume t h a t  the  f u n c t i o n  F ( t , z , s , z )  i s  s t a t i o n a r y  i n  t. 

. By making a change of i n t e g r a t i o n  v a r i a b l e  w e  can w r i t e  Eq.  1 2  i n  

t h e  form 

1 Operat ing on Eq. 1 4  wi th  Lo', as given by Eq.  1 0 ,  and s u b s t i t u t i n g  

,. *- t h e  r e s u l t  i n t o  Eq. 4 y i e l d s  

( t , x) = -El. - *JGo (t ' , x , x ' ) F (t- t ' , x I , t ' I ,  XI') 
w w W r w  w 

- 7- 



The cross-cor re la t ion  f u n c t i o n  R ( ~ , x , y )  is  def ined  by 
.cVw 

(In t h e  case i n  which u is an  m-component vec to r  func t ion ,  t h e  c ross -  

c o r r e l a t i o n  funct ion R ( ~ , x , y )  i s  def ined  by ij - /w 

i = l , - - * , m ,  j = l ; * * , m ,  where t h e  s u b s c r i p t s  on u denote  vec to r  

components.) Upon w r i t i n g  u as  t h e  sum u = + i n  Eq. 16 w e  o b t a i n  

4- <ii( t ,x)G(t-T,y)>.  Ly & 

The two c ross  terms on t h e  right-hand s i d e  of Eq. 1 7 ;  i . e . ,  t h e  terns 

involving products of u and , vanish.  This fol lows from t h e  f a c t  
- 

t h a t  6 is independent of a and t h a t  <h = 0 . Thus, f o r  t h e  f i r s t  

cross t e r m ,  we can w r i t e  

A 

- 
= < u ( t , x  < u  t - r , y ) > A > B = O  , J -( & 

and s i m i l a r l y  f o r  the second cross term. Expressions f o r  t h e  remaining 

two terms on the right-hand s i d e  of Eq. 1 7  can be obtained wi th  t h e  a i d  

_. of Eqs. 11 and 15. These express ions  are 

- 8- 



In deriving Eq. 19 use has been made of the fact that F i s  independent 

of b and that f is independent of a. The terms on the right-hand 

sides of Eqs. 18 and 19 can be expressed in terms of the correlation 

Equation 17 can then be written 

-9- 



Note t h a t  

as can be  seen by r e f e r r i n g  t o  E q s .  1 6  and 22-24. 

u ( t , z ) ,  as c a l c u l a t e d  he re ,  i s  indeed s t a t i o n a r y  

~ The s p e c t r a l  d e n s i t y  func t ion  S(w,x,y) is  def ined  by 
* n u .  

With t h e  a i d  o f  Eq.  22 w e  can w r i t e  - ._ 

- 
where S and $ are defined by 

i n  time, 

- - 
To c a l c u l a t e  S w e  i n s e r t  i n t o  E q .  27 t h e  express ion  f o r  R 

~ , t ' ,  and s ' .  given by E q .  23 and ca r ry  ou t  t he  i n t e g r a t i o n  over 

The r e s u l t  i s  

where w e  

' ( 2 6 )  

-10- 



H ( w , x , x ' )  = /G(t ,x,x')eiwtdt , 
k4 .u  ru,- 

and the symbol ( )*  denotes a complex conjugate. Similarly, an 

expression for 5 is obtained by substituting the formula for 

given by Eq. 24 into Eq.  28 and carrying out the integration over 

T, t', s ' ,  t", and s". This procedure yields 

x O(W- W' , X' , y',~' ,x",-w' ,y")So (w'  ,X",y")dU' 
4 -  w A N W  

X dz'dy'dx"dy" , 
w w m  

where we have defined Ho and 0 by 

Ho(w,x,x') = /Go(t,x,x')e iwt dt , 
w -  .be- 

i(WT+W+t'+W-sf) 
xe d~dt'ds' . ( 3 4 )  

In deriving E q .  32 we have made use of some known results relating the 

Fourier transform of a product of two functions to the convolution of 

the transformed functions. 

We consider now the special case in which Lr can be written as 

a finite linear combination of the form 

-11- 



(summation on repeated indices' is implied), where the 

functions, stationary in time and with zero mean (i.e., 

p ' s  P 
are random 

<p > = O  ; 
P A  

. p=l,***,N), and the K ' s  are determinate operators which commute 
P 

with time translations. 

case in which the 

coefficients.) 

(Of particular interest, of course, is the 

K ' s  are differential operators with constant 
P 

Then, using E q .  13, we can write 

, N .  Gp(t,x,x') = K G(t,x,x') ; p = l,**- 
404- P * I u  

- .  

Inserting Eq. 36 into E q .  20 yields 

where r is defined by 
P 9  

for p = l , * * * , N , q = l , * . * , N .  Upon combining E q .  34 with E q .  38 we 

find that 

where we have defined 
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Hp ( w , X,  X' ) = I G (t , x , x' ) eiWtdt 
WrH, P - -  

f o r  p = l , * * * , N ,  and 

.Z '(u , x,y)  = r (T, x, y)eiwTd.r 
Pq - - P 9  - .u/ 

for p = l , * * = ,  N ,  q =  1, . * *  , N .  For t h i s  case t h e  express ion  f o r  R - 

is t h e  same as t h a t  given by E q .  2 3 ;  however, t h e  expression f o r  - R ,  

which is obtained by i n s e r t i n g  Eq. 38 i n t o  Eq.  2 4 ,  becomes 

X Ro (r - t' + s ' - t" + s", x", y") d t  ' dx' d s  'dy'dt"dx"ds"dy" . ( 4 3 )  
4d W *AI w ,w+v 

S i m i l a r l y ,  t h e  expression f o r  - S f o r  t h i s  case is  t h e  same as t h a t  

given by Eq.  29, whereas t h e  expression f o r  

s u b s t i t u t i n g  Eq.  40 i n t o  Eq.  3 2 ,  becomes 

, which i s  obtained by 

X SO (w, x" , y") ] dx'dy'dx"dy" . 
W W  I W W  W N  

The n o t a t i o n  ( ) * (  ) denotes  a convolution w i t h  r e s p e c t  t o  w ; i . e . ,  

(44 1 

Whenever t h e  convolution symbol appears i n s i d e  b r a c k e t s ,  as i n  E q .  4 4 ,  

i t  i s  t o  b e  understood t h a t  only the terms i n s i d e  t h e  bracke ts  a re  

involved i n  t h e  convolution. 

. .  
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Referr ing aga in  t o  t h e  gene ra l  a n a l y s i s  ( i . e . ,  t h e  a n a l y s i s  l ead ing  

t o  E q s .  23, 24 ,29 ,  and 32) ,  an  important  s p e c i a l  case occurs  when t h e  

ope ra to r s  Lo and M commute wi th  space ,  as w e l l  as t i m e ,  t r a n s l a t i o n s .  

Then, i n  an  obvious change of n o t a t i o n ,  w e  can w r i t e  t h e  Green's func- 

t i o n s  G o ( t  - t', x ,x ' )  and G(t  - t', x x ' )  i n  t h e  form Go ( t  - t', x -  x ' )  

and G ( t  - t ' , x -  x ' )  a where Go and G are s o l u t i o n s  of 

w -  -3 4.j- 4 4 2 -  

* v . w  

L ~ G ~ ( ~ , $  = U t ) U x )  , ( 4 5 )  
rw 

and,  

I n  a d d i t i o n ,  t h e  func t ion  F i s  now def ined  by 

F ( t ,  .cv ~ , t - t ' , ~ - ~ ' ) = L 1 G ( t - t ' , x - x ' ) ,  w m ' w  ( 4 7 )  

and is  assumed t o  be s t a t i o n a r y  i n  t h e  f i r s t  two v a r i a b l e s .  

By making some changes of i n t e g r a t i o n  v a r i a b l e s  i n  E q s .  11 and 
- -w 

15, w e  can write t h e  express ions  f o r  u and u f o r  t h i s  ca se  i n  

t h e  form 

x f ( t -  t ' - t "  X - X ' - X ' ' )  d t 'dx 'd t"dx" .  
a- .H. Ar * .v ( 4 9 )  

From E q s .  48 and 49 expressions f o r  and E can be obtained i n  a 

manner s imi l a r  t o  t h a t  used i n  de r iv ing  E q s .  23and  24. The r e s u l t  is  

X R o ( r  - t t + s ' , ~ - ~ t , ~ - ~ t ) d t ' d x ' d s ' d y '  A.u I+(r , 
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2 
E(T,x,y) = E /:**I Go(t',s')GO(s', w y ' )  

x Q ( r - t ' + s ' ,  y-:+x' -y ' ,  t lc,$,sl l ,yll)  

M -  . 

w & A N  4.u 

X Ro (T - t ' -t S ' - t" + s 'I, x - 5' - XI', y -x' - y") d t  'dx' ds  'dy ' 
w -.u. 1v ry w 

X dt"dx"ds"dy" , 
rw & 

where, f o r  t h i s  case ,  t h e  func t ion  Q is def ined  by 

- 
Expressions f o r  S and 2 f o r  t h i s  case are obta ined  by i n s e r t i n g  

t h e  formulas f o r  E and given by Eqs. 50 and 51 i n t o  Eqs.  27 and 

28. The r e s u l t  is  

x O ( w - w '  ,y - x +x' - y', w '  ,$,-w' ,y") 
r W w *  w Iw 

where 

Ho (w,x-) = \Go ( t  ,z)eiwtdt , 

i w t  
H(w,x) = I G ( t , x ) e  d t  , 

rn w 

(55) 

(56) 
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The ana lys i s  l ead ing  t o  Eqs. 50, 51, 53,  and 54 can b e  

f u r t h e r  by consider ing aga in  t h e  case  i n  which t h e  ope ra to r  

s p e c i a l i z e d  

L1 can b e  

w r i t t e n  i n  the form given by Eq. 35, where now t h e  p 's are s t a t i o n a r y  

i n  space as wel l  as i n  t i m e ,  and t h e  commute wi th  both  space and 

time t r a n s l a t i o n s .  Then from Eq. 47 w e  have 

P 
K 's 

P 

F ( t , x , t - t ' ,  m/ N W  X - x ' )  = p p ( t , x ) G p ( t -  - t ' , X - X X ' )  r W *  , (58) 
-. - 

where 

G ( t , x )  fK G(t ,x)  ; p = l , ' " , N .  
P "  P "  

Subst$tut ing t h e  express ion  f o r  F given by Eq. 58 i n t o  Eq. 52  y i e l d s  

where 

where 

(64) 
i w t  

H ( u , x ) = / G  ( t , x ) e  d t ;  p = l , * * '  , N e  
P "  P -  
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. 

With t h e  a i d  of Eqs. 51, 54 ,  60, and 62 w e  can w r i t e  t h e  formulas f o r  

E and f o r  t h i s  case i n  the form 

Z(.r,x,y) = E'/* * /  Go (t' ,x')Go ( s '  ,y')G (trr,xl')G (s",y") 
- w  M/ - P  - Q ' w  

X d t ' d x ' d s  ' dy ' d t "dx"ds"dy" , 
& Au t.4. rw 

x [ 2 (w,y - z + x '  - y ' )  * H (w,x")H * ( 0 , ~ " )  

P9 - - n w  P - 9 -  

The formulas f o r  E and : f o r  t h i s  case are given by Eqs. 50 and 5 3 .  

A l l  of t h e  formulas f o r  R and S given i n  t h i s  s e c t i o n  are a c c u r a t e  

t o  o rde r  c2 ; i .e.,  t h e  e r r o r  i n  them is of o rde r  c 3  . This  i s  a con- 

sequence of t h e  dropping of terms of o rde r  c 3  i n  Eq. 3 and i n  

- 
Eq. 4 (note  t h a t  u i s  of o rde r  E) , and t h e  vanish ing  o f  t h e  c r o s s  

terms i n  Eq. 17.  

It should be poin ted  o u t  t h a t ,  f o r  p r a c t i c a l  purposes,  i t  is  

u s u a l l y  convenient t o  assume t h a t  a l l  random processes  under considera- 

t i o n  are ergodic ,  as w e l l  as s t a t i o n a r y ,  i n  t i m e ,  i n  which case t h e  

average denoted by < > can b e  regarded as a t i m e  average. 

11. APPLICATION 

In  o rde r  t o  show how the r e s u l t s  obtained i n  t h e  previous s e c t i o n  

may be app l i ed  t o  a p a r t i c u l a r  case,  w e  use them h e r e  t o  c a l c u l a t e  t h e  

frequency spectrum of t h e  scalar wave f i e l d  r a d i a t e d  by a random p o i n t  

-17- 



source in a three-dimensional time-dependent random medium. The 

starting point of this analysis is the scalar wave equation 

(c  -2 a t - v  2 2 ) u = f ,  

where u is the wave function, f is the source term, and c is 

the local propagation speed of small disturbances of the medium. All 

quantities under consideration are assumed to be functions of t and 

x, where 

spatial coordinate. 

t is time and x [ =  (x1,x2,x3)] is a three-dimensional 
rw m 

Both the propagation speed c and the source term f are, in 

general, random functions; however, as discussed at the beginning of 

Sec. I, these functions are assumed to be statistically independent 

and are to be regarded as being dependent on parameters a and b, 

respectively, which are elements of differcnt sample spaces A and 

B. In addition, we assume that the random fluctuations of the medium 

are stationary in time and space and represent a small perturbation 

of a uniform state. Thus we write 

(68) 

where co is a constant, E is a small parameter which is a measure 

of the magnitude of the random fluctuations of the medium, and 

is a random function, stationary in t and 5, with zero mean and unit 

variance; i.e. , 

p(t , ,x) 

2 
< ~ t > ~  = 0 , <p >A = 1 . 

As a consequence of the assumptions stated above, the relevant 

formulas for calculating the functions R and S for this case are 

given by Eqs. 50, 53, 6 5 ,  and 66, along with E q s .  22 and 2 6 .  (Actually, 
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s i n c e  w e  are i n t e r e s t e d  he re  only i n  t h e  func t ion  

concerned wi th  Eqs. 53, 6 6 ,  a n d 2 6 . )  In  o rde r  t o  make use  of t h e s e  

equa t ions  we need t o  c a l c u l a t e  the  f u n c t i o n s  

as t h e i r  t ransforms H o ,  H ,  and HI. We t u r n  now to  t h e  c a l c u l a t i o n  of 

these func t ions .  

S, w e  need only be  

G o ,  G ,  and GI, as w e l l  

Upon s u b s t i t u t i n g  Eq. 68 into Eq. 67 and expanding in powers of 

E we can w r i t e  the l a t t e r  equation i n  t h e  form 

(LO+& L , + c  2 L 2 + " ' ) u = f ,  

where t h e  ope ra to r s  L O ,  L1, and Lp are given by 

, 
-2 2 L,, = c0 a t  - v2 , 

-2 2 L~ =-2co p a t ,  

~ ~ - 3 C o  -2 p 2 a t .  2 

, The func t ion  Go for t h i s  case ,  which corresponds t o  a s p h e r i c a l  

pulsed wave propagat ing i n  a uniform medium, i s  obta ined  by s o l v i n g  

Eq. 45, with  LO given by Eq. 70, s u b j e c t  t o  t h e  i n i t i a l  cond i t ion  

G o = O  f o r  t < O .  This y i e l d s  the  f a m i l i a r  waveform given by 

(73) Go(t,E) = (4nx)- ld(t  - ci lx)  . 
By i n s e r t i n g  t h e  express ion  f o r  

i n t o  Eq. 7 , c a r r y i n g  o u t  the i n t e g r a t i o n  over  

G o ( t - t ' , & - z ' ) ,  as given by Eq. 7 3 ,  

t ' ,  and changing t h e  

s p a t i a l  i n t e g r a t i o n  v a r i a b l e ,  w e  can express  t h e  ope ra to r  LO -1 i n  

t h e  form 
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The func t ion  Ho(w,xJ 

Eq. 73 according t o  Eq .55 .  The r e s u l t  i s  

f o r  t h i s  case i s  e a s i l y  obta ined  by t ransforming 

-1 i k x  H ~ ( w , x )  = (47rx) e , 
3u (75) 

where k = w/co. 

The func t ion  G( t ,z )  f o r  t h i s  ca se  is  determined by Eq. 4 6 ,  where 

t h e  opera tor  M is  given by Eq.  5 .  With t h e  a i d  of t hese  equat ions ,  

a long w i t h  Eqs.  70, 71, 72, and 74, w e  can w r i t e  t h e  equat ion  f o r  

G(t,x) i n  the form 
Lv 

where t h e  subsc r ip t s  denote  d e r i v a t i v e s ,  and w e  have def ined 

The i n i t i a l  condi t ion f o r  G i s  t h a t  G = O  f o r  t < O .  

The procedure by which E q .  76 is  solved f o r  G( t ,x)  i s  descr ibed  
nu 

i n  Appendix A .  Since w e  wish only t o  c a l c u l a t e  t h e  func t ion  S ,  w e  

need only the t ransform H(w,$ of G(t,xJ , as defined by Eq. 56. 

For t h e  case  i n  which t h e  medium i s  s t a t i s t i c a l l y  i s o t r o p i c  [ i . e . ,  

when t h i s  quan t i ty  i s  given by Eq. A l l ,  which we 

r e w r i t e  here  i n  t h e  form 

r(r,S) = r('1,c) 3 , 
Au 
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where 

C(k) = 1 + 2E2q(k) . ( 7 9 )  

The func t ion  Ji(k) is  given by Eq. A12, and K i s  given by E q .  A l O .  

The func t ions  Gl(t,z) and Hl ( t , x )  are determined by E q s .  59 
Av - _  

and' 6 4 ,  where, f o r  t h e  case under cons ide ra t ion ,  N = 1 and, i n  view of - 
-2 2 E q s .  35 and 71, p l ( t , z )  = u ( t , z )  and Kl =-2co  3 It fo l lows  t h a t  t '  

G ,  ( t  ,x) = -2ci2G ( t y x )  , (80) + , tt f i  

and hence t h a t  

2 Hi (w,x) = 2 k  H(u,x) . 
rc m 

The source  t e r m  f is assumed t o  r ep resen t  a po in t  source  i n  

space but  one which i s  random i n  time. Accordingly w e  write 

f <t,$ = s < t > s ( ~ )  Y (82) 

where g ( t )  i s  astationary'randomfunction wi th  zeromean. Equation 2 1 t h e n y i e l d s  

RO (T y X , Y >  = PO (T 6 (XI 6 (Y) 9 (83) 
M W  w r w  

where P o ( T )  is  def ined by 

Po('r) = < g ( t > s ( t  - ( 8 4 )  

Upon t ransforming Eq. 83 according t o  Eq.  3 1 w e  o b t a i n  
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- 
Expressions f o r  S and s" can now b e  obta ined  by s u b s t i t u t i n g  

t h e  formula fo r  S o  .given by Eq. 85 i n t o  Eqs. 53 and 66 and c a r r y i n g  

o u t  t h e  i n t e g r a t i o n  over x' and y '  i n  Eq. 53 and over x" and y" 

i n  Eq. 66. The r e s u l t  i s  

- 

W w .Id w 

4 * - x f x'-y') * w Q o  ( ~ ) H ( w , x  - x')H (W,Y - y') 
. W w w . K I  NrW w w  

where Z i s  given by 

and w e  have used Eq. 8 1 t o  s u b s t i t u t e  f o r  H1 i n  terms of H. The 

s p e c t r a l  dens i ty  func t ion  S ( W , ~ L )  can now be  c a l c u l a t e d  i n  terms 

of known funct ions  wi th  t h e  a i d  of Eqs. 2 6 ,  87, 86, 75, and 78. 
- 

The expression f o r  S and 5 given by Eqs. 87 and 88 can be  

considerably s impl i f i ed  i n  t h e  case of high-frequency waves; i . e . ,  

when t h e  c h a r a c t e r i s t i c  frequency of t h e  source  is  much g r e a t e r  than 

t h a t  of t h e  medium. I n  consider ing t h i s  case w e  s h a l l  restrict  our 

a t t e n t i o n  t o  t h e  power spectrum Q(w,x) , which is  def ined by 
4.4 

where 



Eqs. 87 and 88 y i e l d  

( 9 5 )  

4 

Q(w,$ = (2E2/7rci)lI H O  (@,$ )$(w,y') 
A u  

4 
X [Z(w,z'-y') * w QO (w)H(w,x - x')H*(w,x - y ' ) ]  dx'dy' . 

* . w  - 4 u  rw W H .  

A f t e r  changing t h e  i n t e g r a t i o n  v a r i a b l e s  i n  Eq. 95 w e  can w r i t e  

6(w,z) = ( 2 & 2 / a C 4 , ) / ~ ~ O ( ~ , ~ - ~ ' ) ~ O ( ~ , ~ - - i i )  * 

X [Z(w,$' - HI x') * w4Q0 (w)H(w,x')H*(w,x")] & & dz'dx" nu . (96) 

The f i r s t  s t e p  i n  t h e  high-frequency a n a l y s i s  is  t o  o b t a i n  an  

asymptotic expansion, v a l i d  f o r  l a rge  k , f o r  t h e  q u a n t i t y  K . This 

is e a s i l y  accomplished b y i n t e g r a t i n g  by p a r t s  i n  Eq. A10, a f t e r  sub- 

s t i t u t i n g  f o r  X from Eq. A2 and r e c a l l i n g  t h a t  r ( T , c )  = r ( T , c )  

for t h e  i s o t r o p i c  case  under cons idera t ion .  

Lv 

This y i e l d s  t h e  approximation 

where 

2 2  
a = €  k 8 .  (98) 

The q u a n t i t y  8 

medium, and is def ined by 

is  a c h a r a c t e r i s t i c  l eng th  scale as soc ia t ed  wi th  t h e  

L 



With t h e  a i d  of Eqs .  75, 78, and 97 w e  can w r i t e  E q s .  94 and 96 i n  

where, from Eq. 79 , 

4 
( I n  de r iv ing  Eq. 102 terms of order  E w e r e  dropped.) 

' The i n t e g r a l  over 5' and &4, x" i n  Eq.  101 has  been eva lua ted  us ing  

t h e  forward-scat ter  approximation. The d e t a i l s  of t h a t  c a l c u l a t i o n  are 

given i n  Appendix B. The r e s u l t i n g  approximate express ion  f o r  t(u,$ 

can be  w r i t t e n  

. -  

W(w) = (41~R)-';(w,k) , 

h 

and Z i s  given by Eq. B17 .  

An expression f o r  Q(w,x-) can now be obta ined  by s u b s t i t u t i n g  t h e  
, 

formulas f o r  G(w,z) and G(u,x) given by Eqs.  100 and 103 i n t o  Eq. 91. 
.KI 
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I n  so doing w e  s impl i fy  matters s l i g h t l y  by making t h e  approximation 

IC (k) I = 1. 

( ~ T x ) - ~  w e  o b t a i n  f i n a l l y  

A f t e r  d i v i d i n g  through by t h e  spher ica l - spreading  term 

It should be  poin ted  o u t  h e r e  t h a t ,  a l though t h e  e r r o r  i n  t h e  gene ra l  

formulas f o r  R and S given i n  Sec. I is of o r d e r  c 3  , t h e  e r r o r  i n  

Eq. 105 is of order  c 2 .  This  i s  because some terms of o rde r  c2 w e r e  

dropped i n  t h e  d e r i v a t i o n  of  t h i s  equat ion.  

We see from Eq. 105 t h a t ,  as a x +  0 ,  

Thus, as E and/or  x ( t h e  source-f ie ld  p o i n t  d i s t a n c e )  goes t o  ze ro ,  

t h e  wave spectrum (with t h e  spherical-spreading t e r m  f a c t o r e d  o u t )  

approaches t h e  source spectrum, as w e  would expect .  

l i m i t ,  i .e . ,  as a x + a ,  Eq. 105 shows t h a t  

I n  the oppos i t e  

We see t h e r e f o r e  t h a t  t he  wave spectrum (again a p a r t  from t h e  sphe r i ca l -  

spreading  term) tends t o  a l i m i t i n g  form as x + a .  This l i m i t i n g  form, 

which i s  given by t h e  right-hand s i d e  of Eq.  107, is  r e f e r r e d  t o  h e r e  

as t h e  fully-developed spectrum. 

It may b e  v e r i f i e d  by d i r e c t  i n t e g r a t i o n  of Eq. 105 t h a t  
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In the derivation of Eq. 108 we have used the fact that 

Equation 108 shows that the total signal power; i.e., the area under 

the spectral curve, normalized by the spherical-spreading term, is 

conserved. 

We can simplify Eq. 105 further by assuming that the band-width 

of the source is so small that, insofar a s  the convolution integral is 

concerned, Qo(w) can be regarded as a delta function. Accordingly we 

replace Q0(w) in the convolution term by 

(since Q o  must be an even function), where Ao > O  and w o  >O. We can 

also write, in this case, 

-2CLoX 
Q o ( ~ )  , - 2ax 

e Q o ~ )  = e  

2 2  where = E  koR and ko =WO/CO . Then Eq. 105 becomes 

where 

&,(w) =A0[W(w-wo) +W(w+wo) ]  . 

Note that, as a consequence of Eq. 108, we must. have 

1 & , b ) d W  = / Q o  (w)dW 9 

and hence, in view of Eq. 109, 
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. - __ 
By i n t roduc ing  a "broadening parameter" 6 ,  def ined  by 

. -  - .  - -. 

we can write Eq. 110 i n  t h e  form 

(114; 

Thus w e  see t h a t  t h e  wave spectrum (with t h e  spher ica l - spreading  term 

f a c t o r e d  ou t )  can be regarded i n  t h i s  case as a l i n e a r  ( i n  6) 

i n t e r p o l a t i o n  between t h e  source  spectrum Qo(w> and t h e  f u l l y -  

' developed spectrum $(w) . 
I n  o rde r  t o  show t h e  broadening phenomenon g r a p h i c a l l y ,  numerical  

c a l c u l a t i o n s  of t h e  q u a n t i t y  (4?rx)*Q(w,$ as a func t ion  of w have 

been made f o r  va r ious  va lues  of f3 us ing  Eq. 115. For t h i s  purpose t h e  

source  spectrum Q O  (w) 

peaked about a frequency w o  c a l l e d  the c a r r i e r  frequency. The func t ion  

W(w) w a s  a l s o  chosen t o  b e  a Gaussian, less sha rp ly  peaked, cen tered  i n  

t h e  f i r s t  i n s t a n c e  about w = O  and i n  t h e  second about a frequency Ro 

f o r  which 0 < < < wo . 

w a s  chosen to  be  a Gaussian'  func t ion ,  sha rp ly  

The r e s u l t s  of t h e s e  c a l c u l a t i o n s  are p l o t t e d  ( i n  dimensionless  

coord ina tes )  i n  F igs .  1 and 2. A l l  of t h e  curves  i n  each f i g u r e  are p l o t t e d  

on t h e  same scale. Note t h a t  i n  each f i g u r e  t h e  cu rve  l a b e l e d  B = O  

corresponds t o  t h e  source  spectrum, t h e  curve l a b e l e d  @ = 1  corresponds 

t o  t h e  fully-developed spectrum, and those  l a b e l e d  w i t h  va lues  of 

between zero  and one correspond t o  in t e rmed ia t e  s t a g e s  i n  t h e  broadening 

process .  Both s e t s  of curves  show c l e a r l y  t h e  broadening of t h e  wave 

6 
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spectruni w i t h  i nc reas ing  B .  The two sets d i f f e r ,  however, i n  one r e s p e c t .  

The r e s u l t s  shown i n  F ig .  2,  f o r  which t h e  f u n c t i o n  W(w) is  peaked a t  a 

non-zero v a l u e  of w ,  are marked by t h e  appearance of s i d e  lobes  on t h e  

broadened spectrum. I n  F ig .  1, by c o n t r a s t ,  f o r  which W(w) i s  peaked a t  

w = O  , no such s i d e  lobes appear .  

The r e s u l t s  ob ta ined  h e r e  appear  g e n e r a l l y  t o  b e  i n  q u a l i t a t i v e  agree- 

ment w i t h  observa t ion ,  as can b e  seen  by, f o r  example,  comparing F ig .  1 

w i t h  Fig.  11 of Ref. 1 o r  F ig .  3 of Ref.  2.  Note moreover t h a t  t h e  observa- 

tions r e p o r t e d  i n  Refs.  1 and 2 i n d i c a t e  conse rva t ion  of t o t a l  s i g n a l  power, 

which i s  a l s o  c o n s i s t e n t  w i t h  t h e  p r e s e n t  r e s u l t s  ( c f .  Eq.  108). 
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LIST OF FIGURES 

Fig.  1. 

fac to red  out )  v s .  dimensionless  frequency f o r  v a r i o u s  v a l u e s  of t h e  

broadening parameter 8 .  The c a l c u l a t i o n s  are based on Eq. 115. The 

Dimensionless wave spectrum (with t h e  sphe r i ca l - sp read ing  t e r m  

- mark on t h e  h o r i z o n t a l  scale corresponds t o  t h e  carrier frequency 

w o  . The func t ion  W(w) i s  peaked a t  w =  0 .  

Fig.  2. Same as Fig.  1, except  t h a t  t h e  f u n c t i o n  W(w) is  peaked a t  

a non-zero value of w ,  

J 
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APPENDIX A. CALCULATION OF G(t;xJ AND H ( w , x )  
& 

The func t ion  G( t ,z )  of Sec. 2 is determined by Eq.  76,  toge ther  

w i th  t h e  i n i t i a l  condi t ion  G = O  for t < O .  An equat ion  for t h e  t r ans -  

form H ( w , x )  of G(t,E) , as defined by Eq. 56, is obtained by t r ans -  
A N  

forming both  s i d e s  of Eq. 76. The r e s u l t  is  

where t h e  func t ion  X(k,S) is defined by 
Ay 

In order  t o  s o l v e  Eq. A 1  w e  introduce t h e  s p a t i a l  Four i e r  t ransform 

fi(w,m) of H(w,x) , def ined  by 
Ly rw 

(A3) 
-iz* x g(w,~)  = 1 H(w,x)e Isy “ d Z ,  

3 
where m x f mixi . Transforming both  s i d e s  of Eq. A 1  according t o  

i = l  

t h e  p r e s c r i p t i o n  given by Eq. A3 and so lv ing  f o r  

r \ y c I  

2 y i e l d s  

6(w,m> = [D(k,m) 1-l , 
@v A.u 

where w e  have def ined 

- 1  ikc 2 2  2 2  D(k,m) = m  2 - (1+ 36 )k - k 5 e 
w 

(A4 1 
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With t h e  a i d  of E q .  A4 w e  can now express  

i.e., we write 

H(w,z) as an  i n v e r s e  t ransform; 

In order  t o  proceed f u r t h e r  w e  assume t h a t  t h e  medium i s  s t a t i s t i -  

c a l l y  i s o t r o p i c ,  s o  t h a t  w e  can w r i t e  ( i n  a n  obvious change of no ta t ion )  

r ( T , ( )  =I ' (T,E)  . Then, i n  view of Eq.  A 2 ,  w e  can a l s o  w r i t e  X(k,S) = 

X(k,€J. 

y i e l d i n g  

w n A l  

The angular i n t e g r a t i o n  i n  E q .  A5 can now be c a r r i e d  o u t ,  

2 2 2 -1 D(k,m) =D(k,m) = m  - ( 1 + 3 ~ ~ ) k ~ -  4~ k m /"eikSX(k,~)sinm<dE.  
#%9 0 

(A7 
. 

Upon s u b s t i t u t i n g  t h e  expression f o r  D given by Eq.  A7 i n t o  Eq.  A6 

and car ry ing  out t h e  angular  i n t e g r a t i o n  w e  f i n d  t h a t  

(A81 
2 -1 " 

H(w,x) = ( 2 ~  x) I [D(k,m)]"'rn s inmx dm . 
0 rcy 

The i n t e g r a l  i n  E q .  A8 can be evaluated by means of contour i n t e g r a t i o n ,  

a f t e r  which the express ion  fo r  H can be w r i t t e n  

H ( U , z )  = ( 2 T d - l  [Dm(k,K)l-l~eiKx . 
Here Dm denotes t h e  d e r i v a t i v e  of D(k,m) wi th  r e s p e c t  t o  m 

(regarded now a s  a complex v a r i a b l e ) ,  and K is  t h e  r o o t  of t h e  

d i spe r s ion  equation D(k,K)=O which has  t h e  proper ty  t h a t  K + k  

as E + O .  To lowest o rde r  i n  E , t h i s  r o o t  i s  given by 

K = k 1 1 + ic2 [ 3 + 4k-' eikSX (k, 5) s i n  kS dE,] 1. 
0 
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. 

Upon s u b s t i t u t i n g  t h e  express ion  f o r  K given by Eq.  A10 i n t o  Eq.  A9, 

a f t e r  c a l c u l a t i n g  Dm us ing  Eq.  A 7 ,  w e  o b t a i n  

-1 iKx H(W,x) -w = [ 1+ 2c2$(k)] ( 4 1 ~ x )  e , 

where 

and higher-order terms i n  & have been dropped. 

The func t ion  G ( t , x )  

Four i e r  t ransform t o  E q .  A l l .  

here ,  however, s i n c e  w e  need only the  func t ion  

t i o n  w a s  c a r r i e d  ou t  i n  Ref. 21 f o r  t h e  case  of a time-independent medium. 

can now be obtained by applying t h e  inve r se  

W e  s h a l l  not c a r r y  o u t  t h i s  c a l c u l a t i o n  

H ( w , z ) .  This ca lcu la-  
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APPENDIX B. CALCULATION OF 6 USING THE FORWARD-SCATTER APPROXIMATION 

By making explicit the w '  integration in Eq. 101 and changing the 

order 

where 

- 
of integration we can write .the expression fdr Q in the form 

the integral I is defined by 

2 2  Here k'=w'/co and O ' = E  k' A .  Equation B2 can be written in the 

alternate form 

ik' ( I x - x' I + x' ) e-ik' ( 1 x - x" I + x") 
.Urw W Y Y  

I(w,x;w') = 
rH. If e Ix-X'IX' I x - x" I x" 

i(k- k') Ix- x'lgi(k - k') I x -  * A -  x " I  
x ~ ( w  - w', ,%'I - x')e H . c . v  

HI 

which is more convenient for the application of the forward-scatter 

approximation. 

We begin the analysis by substituting for Z in terms of I' in 

Eq. B 3  with the aid of Eq. 89 . By changing the order of integration 

in the resulting expression for I we get 
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x r(T,xii- x')e i ( k - k ' ) I x - x ' l e - i ( k - k ' )  r+uw Ix-x"I  M I -  

# A u  

-a'(x' +x") 
x e  dx'dx"dT . 

w w  

Next we  use  Eq. 77 t o  s u b s t i t u t e  f o r  i n  terms of 1.1 i n  Eq. B4. 

Upon r e v e r s i n g  the  o r d e r  of t h e  averaging and i n t e g r a t i o n  (over 

x") processes ,  we no te  t h a t  t h e  double s p a t i a l  i n t e g r a l  can be  s p l i t  

i n t o  a product of t w o  i n t e g r a l s .  

x'  and 
yu 

w 

Equation B4 can then  be  w r i t t e n  

I = / e  i ( w - w ' ) T  <J>*dT 

where 

i k '  (15- x' I + x ' )  
rw i (k - k') I x - X '  I e - ~ ' ~ '  

H I -  dx ' ,  (B7) 
1u 

1.1 ( t ,s' 1 e 
x -  x '  1x1 1, Ad 

J+-J e 

and 

We can now apply t h e  forward-scat ter  approximation, as d iscussed  i n  

and J . This y i e l d s  J+ - Ref. 22, t o  t h e  i n t e g r a l s  
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ik'x 'x i(k-k') (x-XI) J+= (2ri/k'x)e lo v(t,O,O,x')e 

dx' + O(k'-2) , *'X' x e  

. In the derivation of E q s .  B9 and B10 we have set x =  (O,O,x) . This 

entails no loss of generality since the medium has been assumed sta- 

tistically isotropic. 

# 

Conditions for the validity of the forward-scatter approximation 

are given in Ref. 22. 

the form 

In the present context these conditions take 

where k l  is a characteristic wavenumber associated with the wave field. 

By substituting the expressions for J+ and J - given by E q s .  B9 
- 3  

and B10 into Eq. B6, dropping terms of order k' , and averaging, we 
obtain 

The double integral in Eq.  B12 can be partially evaluated with the aid 

of the coordinate transformation c=x"- x', q=x"+x' . The result is 
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I n  d e r i v i n g  Eq. B13 we have made use of the  f a c t  t h a t  

in 5 . 
r(-r,<) is even 

We can now g e t  a series expansion f o r  < J > A  i n  powers of a' 
2 (which is  equiva len t  t o  an  expansion i n  powers of 

terms exp(a'S) and exp(-cr'c) i n  Eq. B13 and i n t e g r a t i n g  t e r m  by 

t e r m .  This y i e l d s  

E ) by expanding t h e  

When x > > L  t h e  i n t e g r a t i o n  i n  Eq. B14 can be extended t o  +a 

without in t roducing  s i g n i f i c a n t  error i n t o  t h e  i n t e g r a l .  

a l l  bu t  t h e  f i r s t  t e r m  of t h e  r e s u l t i n g  expansion w e  ob ta in  

Upon dropping 

An approximate express ion  f o r  t he  i n t e g r a l  I can now be  obtained 

by s u b s t i t u t i n g  t h e  r e s u l t  f o r  

ca r ry ing  ou t  t h e  i n t e g r a t i o n  over '1. This  y i e l d s  

<J>* given by Eq. B15  i n t o  Eq. B5 and 

I = ( 2 1 T ~ / a ' k ' ~ x ~ )  (1 - e-2a'x ) ;(a-w' ,  k - k ' )  , 

where we  have def ined 

- 
Upon combining Eqs. B 1  and B16 w e  ob ta in  t h e  express ion  f o r  Q given 

by Eq. 103. 
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